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Abstract

Following an analogous distinction in statistical hypothesis
testing, and motivated by chemical plume detection in hyper-
spectral imagery, we investigate machine learning algorithms
where the training set is comprised of matched pairs. We
find that even conventional classifiers exhibit improved perfor-
mance when the input data has a matched-pair structure, and
we develop an example of a “dipole” algorithm to directly ex-
ploit this structured input. In some scenarios, matched pairs
can be generated from independent samples, with the effect
of not only doubling the nominal size of the training set, but
of providing the matched-pair structure that leads to better
learning. The creation of matched pairs from a data set of
interest also permits a kind of transductive learning which is
found for the plume detection problem to exhibit improved
performance. This paper has supplementary material online.
Keywords: Algorithms, Classification, Hyperspectral Im-
agery, Hypothesis Testing, Signal Detection, Structured Data
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1 Introduction

In perhaps the simplest formulation of machine learning (Vap-
nik, 1999; Hastie et al., 2001; Duda et al., 2001), one is given
a training set of data samples x ∈ Rd and associated labels
y ∈ {−1,+1}, and the aim is to learn a function f(x) that
predicts the label y that is associated with x. The purpose of
this paper is to investigate a variant of that problem in which
the training samples can be organized into matched pairs:
{(x1, y1), (x2, y2)}, with y1 6= y2 and x2 dependent on x1.

An underlying assumption, in both the standard formula-
tion and in this variant, is that the x values are drawn from
distributions (a separate distribution for each label), which
typically are not known. Indeed, if the distributions were
known, one could immediately find the Bayes optimal func-
tion f(x) for predicting labels from data. In the standard
variant, x values are drawn independently from the distribu-
tions; in the matched-pair variant, however, the values are
drawn in pairs, with one sample from each class. There is a
natural analogy, developed further in Section 1.1, to hypoth-
esis testing with matched pairs. Just as exploiting matched-
pair structure in the hypothesis testing problem can lead to
smaller p-values, exploiting matched-pair structure in the bi-
nary classification problem can lead to fewer misclassification
errors.

This matched-pair structure is not always available for
problems of interest, but one place where it can arise is with
some signal detection problems. A specific example, and the
motivation for this work, is described in Section 1.2. A more
detailed formulation of the matched-pair approach is provided
in Section 2. Three data sets are described in Section 3, along
with a taxonomy of matched-pair structures. Section 4 ap-
plies both batch and online learning algorithms to these data
sets, and Section 5 concludes.

1.1 Analogy: hypothesis testing

A common task in statistical hypothesis testing is to deter-
mine whether two separate sets of data samples arise from the
same distribution. In one textbook example (Crawley, 2005),
measurements of a biodiversity score are taken upstream and
downstream of a sewage outfall. See Table 1. The mean down-
stream score is lower than the mean upstream score, but the
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Table 1: An example of a statistical hypothesis testing problem: biodiversity scores downstream and upstream of a sewage
outfall (Crawley, 2005).

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Down 20 15 10 5 20 15 10 5 20 15 10 5 20 15 10 5

Up 23 16 10 4 22 15 12 7 21 16 11 5 22 14 10 6

difference is substantially less than the day-to-day variation in
these measurements. The question is whether that difference
is statistically significant.

If the upstream and downstream measurements are treated
as independent samples, then a Student’s t-test gives a statis-
tically insignificant p-value of p = 0.69. If it is recognized that
the upstream and downstream values are not independent of
each other, but form matched pairs, then the matched-pair
variant of the t-test can be invoked, and that gives p = 0.008,
which is significant (Crawley, 2005).

This is a situation that arises frequently in statistical prac-
tice. Another well-known example (Box et al., 1978; Venables
and Ripley, 2002) tests two materials used for children’s shoes;
each child got one shoe of each material, and the amount of
wear was recorded. Here, the material-to-material difference
is of interest, but it must be disentangled from the wide vari-
ations in how different children treat their shoes. These are
situations where a matched-pair statistic is more appropriate,
and more powerful, than the statistic that treats the data
samples independently.

In machine learning, the task is a little different. Rather
than asking whether two different states (e.g., upstream and
downstream) have significantly different effects, one seeks a
classifier that distinguishes the states based on observations
of the effects. For example, the task might be to infer from
a given biodiversity score whether it was obtained from an
upstream or a downstream location. In this case, the clas-
sifier would just be a threshold. More commonly, classifica-
tion problems are based on multi-dimensional measurements
with nontrivial boundaries between the classes. But if those
classification problems have a matched-pair structure in the
training data, then we will see that this structure can lead to
better classification accuracy.

1.2 Motivation: finding weak signals

Of particular interest is in the detection of gas-phase chem-
ical plumes in hyperspectral imagery, and in later sections
(3.3 and 4.1.4), the problem will be described in greater de-
tail. What is important about this problem is that the ef-
fect of a plume on a pixel spectrum is well understood; it
suppresses radiation in wavelengths where the plume is ab-
sorptive, by an amount whose variation with wavelength is
precisely known (Beer, 1852; Hayden et al., 1996; Foy et al.,

2009). For wavelengths in the far-infrared, there are emissive
effects as well (Manolakis, 2008). Identifying where a plume
is in a hyperspectral image involves (very roughly speaking)
finding those pixels whose radiance in the plume’s absorp-
tive wavelengths is smaller than would be expected, given the
radiance in the other wavelengths.

But even when the effect of the plume is precisely known,
the detection of plumes is still challenging because the back-
ground is cluttered in a way that is not, a priori, known
at all. Explicitly characterizing this background with a high-
dimensional probability distribution is difficult – and is a more
general problem than the one we actually need to solve.

The traditional machine-learning approach to this kind of
problem is to identify some pixels where the plume is present,
some other pixels where the plume is known to be absent,
and to infer an optimal boundary in spectral space (i.e., the
high-dimensional space of radiances at different wavelengths)
that divides the two sets. Two problems with this approach
are that 1) an adequately large and representative set of on-
plume pixels is rarely available in practice, and 2) the domain
knowledge we have about the effect of plumes on pixels is ig-
nored. We can address both of these issues by creating arti-
ficial on-plume pixels from the off-plume pixels by applying
the known plume absorption spectrum to them. This not only
doubles the size of the training set, it produces a matched-
pair structure within that training set which can improve the
performance of classifiers that are trained with that data.

A practical consideration is that one may not know which
pixels in an image truly are free of plume. If one were to
plunge ahead and treat all the training pixels as off-plume,
and create on-plume pixels from them, one could still produce
a classifier. The performance of this classifier would presum-
ably suffer from the contaminated samples, but for plumes
that are rare and/or weak, we might expect the effect of this
contamination to be small.

We can also use the matched-pair formalism to achieve a
kind of machine learning that is related to the concept of
“transductive inference” introduced by Vapnik (1999, p. 293).
In this scheme, we train the classifier on a matched-pair set
that treats the data of interest as nominally off-plume (even
though the data may well contain pixels for which a plume
is truly present), and creates artificial on-plume pixels from
those nominally off-plume pixels. A classifier trained on these
pixels is then applied back to the data of interest (i.e., to those
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nominally off-plume pixels) for the purpose of detecting the
pixels for which plume is present. The scheme is transductive
because it employs the data of interest in the classifier train-
ing, but (unlike in-sample learning) it does not have access to
labels (i.e., on-plume or off-plume) for that data. Indeed, the
aim is to infer those labels.

2 Formulation

Let p(x) be a probability density function over x ∈ Rd. Let
the function ξ : Rd → Rd represent a “treatment” that
modifies x. In the matched-pair problem, we know ξ but
we do not know p(x), and our aim is to find a function
f : Rd → {−1,+1} which distinguishes x from ξ(x) by classi-
fying them into groups labeled −1 and +1. Thus, the function
f will distinguish treated from untreated data samples; that
is, it will detect those data samples to which the treatment
has been applied.

For the hyperspectral plume detection problem, each pixel
in the image has a vector-valued x corresponding to the spec-
trum of intensities measured at that pixel; the different scalar
components of the vector x correspond to the intensities at
different wavelengths. In this problem, ξ(x) represents the
effect of a plume. If x is the spectrum of a pixel where plume
is absent, the spectrum after a plume is introduced at that
pixel will be given by ξ(x).

In the traditional machine-learning scenario, there is an
unknown parent distribution p(x, y). Since y ∈ {−1,+1} for
binary classification, this amounts to two separate density
functions over the input x – they are p(x,−1) and p(x,+1) –
and a scalar probability for choosing from between them.

What is different in the matched-pair classification scenario
is that there is only a single unknown density function – that
is p(x,−1) – and a known process ξ that defines the other:1

p(x,+1) =

∣∣∣∣∂ξ∂x
∣∣∣∣−1 p(ξ−1(x),−1). (1)

Given density functions for the two classes, one can write
down the Bayes optimal detector in terms of their ratio:
D(x) = p(x,+1)/p(x,−1). When D(x) is greater than a
given threshold, x is predicted to have label +1, and when
it is less than the threshold, then the predicted label is −1.
Thus, f(x) = sign(D(x)− θ) for some threshold θ.

Because there is less to infer in the matched-pair scenario (a
single distribution over x instead of two), it is plausible that
a matched-pair algorithm can more effectively learn a good
classifier. Although the problem has been described in terms

1This is the standard change-of-variables formula for probability dis-
tributions. In (1), ξ is treated as if it were invertible, and for the ex-
amples here, that is the case. But the extension to non-invertible ξ
presents no serious difficulties. Basically, one would have a sum over all
the pre-images.

of underlying distributions, the ultimate aim (for matched-
pair learning, as well as for traditional machine learning),
is not to infer that underlying distribution directly, but more
modestly to learn a discriminating function f(x) that predicts
whether the label for a point x is −1 or +1.

Given that ξ is known, it behooves us to exploit that in-
formation. It is suggested here that we can use ξ not only
to double the size of our training set, but also to provide
a structure to the training set which enables more efficient
learning.

In the formalism presented here, ξ is assumed to be de-
terministic and precisely known. In the discussion of future
work in Section 5, an approach is sketched out for extending
this formalism to account for uncertainty or stochasticity in
ξ. Also, the experiments with the gas-phase plume in Sec-
tion 4.1.4 employ a ξ that varies over different parts of the
plume.

3 Data Sets

The experiments in this paper use three different data sets,
which are described in Sections 3.1, 3.2, and 3.3. Two of these
data sets (in Sections 3.1 and 3.2) are fully simulated, while
the application in Section 3.3 uses real hyperspectral data
with simulated chemical plumes. In Section 3.4, variants of
these data sets are described that use ξ(x) in different ways
to generate matched-pair data sets.

3.1 Multivariate Gaussian data with com-
mon covariance

A simple but revealing data set is provided by a d-dimensional
multivariate Gaussian distribution with an additive treat-
ment. Let p(x,−1) be normal with mean 0 and d × d co-
variance R, and let ξ(x) = x + t for some t ∈ Rd. Then
it follows from (1) that p(x,+1) = p(x − t,−1), and that
p(x,−1) and p(x,+1) are both Gaussian with common co-
variance matrix (R) but different centroids (0 and t, respec-
tively). Thus, the optimal boundary between the two classes
is linear. Indeed, the likelihood ratio leads to the optimal
detector D(x) = tTR−1x.

For our simulations, we will employ a diagonal covariance
matrix R with geometrically decreasing eigenvalues; that is,

R =


1 0 . . . 0

0 λ
. . .

...
...

. . .
. . . 0

0 . . . 0 λd−1

 . (2)

In particular, we take a relatively high dimensional d = 25
data set with a modest dynamic range of 100; thus 1/λ24 =
100. We take t in the direction [1, 1, . . . , 1]T (so that it has
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Figure 1: Twelve 128×128 pixel tiles from a 224-channel hy-
perspectral image collected over Moffett Field in California
(AVIRIS flightline f970620t01p02 r03 sc01).

nonzero components with all of the eigenvectors of R), but
with varying magnitude, so that we can investigate how per-
formance varies with class separation.

3.2 Low-dimensional non-Gaussian data

The previous data set was high dimensional with a linear
boundary between classes. We will also consider a low-
dimensional data set whose optimal boundary is nonlinear.
We begin by drawing w from a multivariate Gaussian (de-
scribed above) using d = 2 and 1/λ = 10; thus, the variance
in the first (long) dimension is 1, and the variance in the sec-
ond (thin) direction is 1/10. We obtain x from w by applying
a nonlinear transform to the second coordinate:

x1 = w1; (3)

x2 = w2 + sin(w1). (4)

Again, we use ξ(x) = x + t, and here we fix t = [0, 0.3]T .
A sample of data is plotted later in Figure 3(a), which shows
the optimal boundary between these two classes is nonlinear.

3.3 Chemical plumes in hyperspectral data

The application of matched-pair machine learning to the
plume detection problem is illustrated on some real hyper-
spectral data from the AVIRIS sensor (Vane et al., 1993).
This 224-channel data, with a spectral wavelength range
from from 390 nm (blue) to 2500 nm (near infrared), was
made available on the AVIRIS free standard data prod-
ucts website (http://aviris.jpl.nasa.gov/html/aviris.
freedata.html). The full image is divided into a dozen
128×128 tiles, shown in Figure 1, and is included in the
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Figure 2: Contour plot shows the spatial
variation of plume strength, relative the
the maximum value, which here is at po-
sition (20,20). Shown are contours of val-
ues from 0.05 to 1.0 in steps of 0.05, with
a darker line at 0.05 (outside of which is
off-plume area for which T (u, v) < 0.05),
and a dark and thicker solid contour at
0.5 (inside of which is the on-plume area
for which T (u, v) > 0.5).

Supplementary Materials online. Thus the sample size is
n = 16384 pixels per tile, and the input dimension is d = 224.

From these real data sets, we also construct image tiles
that include a plume of NO2 gas. The spatial variation of
the plume strength is shown in Figure 3.3. Relative plume
strength at pixel position (u, v) is given by the expression

T (u, v) =

√
η

η + [v − vo]+
exp

(
−

(u− uo)2 + [v − vo]2−
η + [v − vo]+

)
(5)

where [w]+ = max(w, 0) and [w]− = min(w, 0). The po-
sition (uo, vo) is where the plume takes its strongest value:
T (uo, vo) = 1. For a plume of specified strength εo, placed in
the scene at position (uo, vo), the strength at position (u, v)
is given by ε = εoT (u, v). In the experiments reported here,
we use a characteristic plume width of η = 10 pixels.

The effect of the plume is to suppress the radiance by an
amount proportional to the gas absorption cross section b in
units of cm2/molecule (this quantity is specific to the chemical
species, and is known), and the gas column density ε in parts-
per-million-meters (ppmm). Specifically,

ξ(x) = x · exp(−cεb) (6)

= x · exp(−cεoT (u, v)b) (7)

where x is the spectrum of radiance versus wavelength at
a given pixel (u, v) in the absence of plume, the ‘·’ sym-
bol corresponds to element-wise multiplication of vectors,
and the constant c = 5.64 × 1015 cm−2 m−1. The gas col-
umn density (plume strength) ε has spatial variation given
by εoT (u, v) with T (u, v) defined in (5) for testing, but we
will use T (u, v) = 1 for matched-pair training. It bears em-
phasizing that the vector x is of dimension d = 224; there
is one component for each wavelength at which intensity is
measured. In particular, the (u, v) position of a pixel is not
encoded in the vector x.
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The simulation here is relatively simplistic, and does not
take into account, for instance, atmospheric scattering, sensor
saturation, or emissive effects. But even very complicated
simulations, as long as they can ultimately be expressed in
terms of a treatment function ξ(x), can take advantage of the
matched-pair approach.

3.4 Matched pairs of training samples

For each of the data sets described in the previous subsections,
we can create matched-pair data sets so that the training
samples come in pairs of the form (x,−1) and (ξ(x),+1).
This produces a structure in the training data that is not
normally present, and which leads to better classifiers. In
general, we will consider these variants:

(A) an “initial” data set with m labeled samples taken from
the underlying distribution; some with y = −1 and some
(possibly much fewer) with y = 1. There is no matched-
pair structure in this data set.

(B) an “augmented” data set with 2m labeled samples, in
which the initial m samples are extended by m new
points, sampled from the parent distribution, again with-
out any matched-pair structure. Thus, this is the same
as (A) but with twice as many samples.

(C) a “matched-pair” data set with 2m samples, in which the
initialm samples have been extended bymmore samples,
which are the corresponding opposites of the initial m
samples: that is, (x, y) is matched with (ξ−y(x),−y).

(D) a “scrambled matched-pair” data set with 2m samples
that has the same data as the matched-pair data set (D),
but the data order has been randomized.

(E) an initially unlabeled or “contaminated” matched-pair
data set with 2m labeled samples that are created from
m unlabeled samples, as described below.

(F) a “transductive” matched-pair data set, which is identi-
cal to the data in (E), but is evaluated on the original
unlabeled data, instead of a separate out-of-sample data
set.

The third and fourth data sets – (C) and (D) – are identical
except for data order. For many algorithms, they will produce
the same result, but for some algorithms, such as the “online”
algorithms described in Section 4.2, the order does matter.
Whereas the data in set (C) has an explicit structure to it,
one might say that for the data in set (D), that structure
exists but is not made available for an algorithm to exploit.
Of course, there is no practical advantage to scrambling the
data in an operational scenario; the idea is to disentangle the
implicit benefits of matched-pair structure in the data from

the effects of explicit exploitation of that structure by some
of the algorithms.

The contaminated (E) and transductive (F) data sets illus-
trate the concept that knowing the treatment ξ allows one
to do classification of unlabeled data. From an unlabeled
data sample x, for instance, one can produce the training
pair

{
(ξ−1(x),−1), (ξ(x),+1)

}
. One then learns f(x) from

this paired training data, and applies that f(x) either to out-
of-sample data points (E), or back to the original unlabeled
samples (F). As we will see in Section 4.1.2, the application
of f(x) back to the original unlabeled samples is particularly
useful for detecting weak signals on cluttered backgrounds.
For the detection problem, however, since the default label is
−1, we use training pairs given by {(x,−1), (ξ(x),+1)}.

To illustrate these variants, we have plotted examples of the
nonlinear data described in Section 3.2. Figure 3(a), which
corresponds to item (A) in Section 3.2, shows an initial data
set with m = 10 labeled samples. In Figure 3(b), correspond-
ing to item (B), the initial m = 10 data samples are aug-
mented with another 10 samples – fresh data points, sampled
from the parent distribution. The matched-pair data in Fig-
ure 3(c), corresponding to item (C), has the same number of
data points as Figure 3(b), but they are derived directly from
the original data in Figure 3(a) and do not rely on information
about the underlying distribution. If the scrambled matched-
pair data described in item (D) were plotted, it would be
identical to Figure 3(c). If the initial data were unlabeled, as
shown in Figure 3(d), then we could still create matched-pair
data, by applying both ξ and ξ−1 to the unlabeled data; this
case corresponds to items (E) and (F) in Section 3.2.

4 Learning with matched-pair data

We will consider both batch and online algorithms. For the
batch algorithms, all of the data is provided at once, and order
doesn’t matter. For the online algorithms, data samples are
presented sequentially.

4.1 Batch algorithms

This section will consider learning algorithms that use all
of the training data in one batch. Section 4.1.1 will open
with some general remarks about the Fisher discriminant,
and will develop a simple model for estimated error of the
Fisher discriminant when applied to ordinary and matched-
pair data. Section 4.1.2 will apply the linear Fisher discrimi-
nant to simulated Gaussian data described in Section 3.1 for
which the optimal boundary between classes is linear. In Sec-
tion 4.1.3, we will apply a k-nearest-neighbor (kNN), and a
support vector machine (SVM) as implemented in the libSVM
package (Chang and Lin, 2001), to the data in Section 3.2,
for which the optimal boundary is nonlinear. Then in Sec-
tion 4.1.4, we will apply the Fisher discriminant to the plume
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Figure 3: Illustrates different ways, described in Section 3.4, that matched-pair data can be derived from an initial set
of observations, using the data described in Section 3.2. (a) m = 10 unmatched observations; (b) the initial m = 10
observations are augmented by adding 10 more independent sampled observations; (c) the initial m = 10 observations are
plotted with their corresponding matched pairs. (d) the initial m = 10 observations are plotted without labels. (e) each
unlabeled observation in (d) is associated with a matched pair of labeled observations.
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detection data described in Section 3.3. For all of these exper-
iments, standard learning algorithms will be used; they are
not modified to take explicit advantage of the matched-pair
structure in the data, but are observed to achieve improved
performance when the data set is composed of matched pairs.

4.1.1 Fisher discriminant

The Fisher discriminant is a simple linear classifier, but its
simplicity will help elucidate the effects of matched-pair data
on learning.

If p(x) is Gaussian and ξ(x) = x + t (as it is, for instance,
with the data in Section 3.1), then the optimal classification
is given by a linear filter given by q = R−1t, where R is
the covariance matrix of the Gaussian distribution and the
classifier is f(x) = sign(qTx − θ) for some scalar offset θ
which depends on the relative importance of false alarms and
missed detections.

In the traditional formulation, one does not know t but is
given a set of training examples: {(xi, yi); i = 1, . . . ,m}. The
Fisher discriminant algorithm computes estimates for both
the pooled covariance R and for the separation t. In partic-
ular, we estimate centroids

µ+1 =

∑m
i=1 xiI(yi = 1)∑m
i=1 I(yi = 1)

(8)

µ−1 =

∑m
i=1 xiI(yi = −1)∑m
i=1 I(yi = −1)

(9)

(where I is the indicator function), and use those to estimate
the pooled covariance

R̂ =
1

m

m∑
i=1

(xi − µyi
)(xi − µyi

)T (10)

and separation
t̂ = µ+1 − µ−1. (11)

The Fisher discriminant uses q̂ = R̂−1t̂, which allows two
potential sources of error: one in the estimation of the inverse
covariance matrix,2 and one in the estimation of the difference
of centroids. Let us write

q̂ = R̂−1t̂

= (R−1 + ∆R−1)(t + ∆t)

= R−1t + (∆R−1)t +R−1∆t + (∆R−1)∆t. (12)

Each of ∆R−1 and ∆t vary like O(1/
√
m), so their product

varies as O(1/m) and for large m is not as important in the

2A common choice for the estimate of the inverse is the inverse of
the estimate: that is, R̂−1 = R̂−1, but better estimators are sometimes

given by shrinkage operators, such as R̂−1 = ((1 − α)R̂ + αI)−1 for
appropriate choice of α (Friedman, 1989). But whatever estimator is
used, if it is based on m observations, then O(1/

√
m) is the expected

scaling of its statistical error.

above expression as the leading terms. In particular,

∆q = q̂− q = (∆R−1)t +R−1∆t +O(1/m). (13)

Although ∆q provides an absolute measure of error in the
estimate of q, a more relevant measure is the angular discrep-

ancy between q̂ and q. This is given by φ = cos−1
(

qT q̂

|q| |q̂|

)
,

but for for small |∆q| � |q|, an approximate upper bound is
given by

φ .
∆q

|q|
≈ (∆R−1)t

|R−1t|
+
R−1∆t

|R−1t|
, (14)

When t is not known a priori, then the error in t arises
from error in the estimate of the centroids; that is, from (11),

∆t = ∆µ+ −∆µ−, (15)

which is independent of the magnitude of t. Thus ∆t/|t|
scales like 1/|t|. The error in the covariance matrix is also in-
dependent of t and so we have that the term (∆R−1)t/|R−1t|
scales independently of |t|. Thus, for small ∆q, we expect

∆q

|q|
≈ 1√

m

(
C1 +

C2

|t|

)
, (16)

where C1 and C2 characterize how well we can estimate R−1

and t, respectively.
When t is known a priori, then C2 = 0 in (16). But even

when t is not known, if the training data have the matched-
pair structure corresponding to {(x,−1), (x + t,+1)}, then
the estimated t̂ will be exact and, again, we will have C2 = 0.

4.1.2 Fisher discriminant applied to multivariate
Gaussian data

The behavior expressed in (16) is seen in the application of
Fisher discriminant to the multivariate Gaussian data de-
scribed in Section 3.1, and this is shown in Figure 4.1.1(a).
This figure shows angular discrepancy φ between q̂ and q as
a function of class separation, as measured by

√
tTR−1t, the

Mahalanobis distance between the centroids. For the matched
pair data, we have that ∆t = 0, and so C2 = 0 and there is no
variation in angular error with |t|. For the unmatched data,
however, we see that error decreases with |t| until it reaches
an asymptotic value that corresponds to error due to estima-
tion of the inverse covariance R−1. In particular, there is a
crossover point at which the m = 50 matched pairs of data
samples (i.e., 2m = 100 separate samples) achieves the same
performance as m = 100 independent samples. For small |t|,
the matched pairs are better, but for larger values of |t|, the
independent samples provide a better estimate of the covari-
ance, and this leads to better performance in the estimate
of q̂. It should still be remarked (and it is also shown in
the plot) that m = 50 matched pairs are always better than
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Figure 4: Results of experiments described in Section 4.1.2, using the multivariate Gaussian data described in Section 3.1.
(a) Angular discrepancy (in radians) between the estimated matched filter q̂ and the actual matched filter is plotted against

class separation (given by
√
tTR−1t) for three different sampling methods described in the text. (b) The simple model in (16)

predicts the main features of how error varies with class separation, for larger values of class separation. (c) Misclassification
error is plotted for the estimated discriminants.
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Table 2: Nonlinear classifiers applied to data described in
Section 3.2, using the data augmentation variants described
in Section 3.4. Shown is the mean out-of-sample error rate for
a k-Nearest Neighbor (kNN) and a support vector machine
(SVM) classifier. The Bayes-optimal error for this example is
0.0668± 0.0001.

kNN SVM
m = 150 m = 500 m = 150 m = 500
(k = 3) (k = 7) (C = 30) (C = 30)

(A) initial 0.1247 0.0898 0.0822 0.0722
(B) augmented 0.1020 0.0820 0.0751 0.0697

(C) matched 0.0984 0.0807 0.0747 0.0696
(E) contaminated 0.1125 0.0852 0.0807 0.0717
(F) transductive 0.1120 0.0850 0.0806 0.0716

m = 50 independent points. These trends are echoed in Fig-
ure 4.1.1(b), which translates (16) directly into angular error,
using C1 = C2 = 3.5; these values are chosen to correspond
to the empirical results in Figure 4.1.1(a). For very small |t|,
the there will be no “lever arm” to estimate the direction of
t, and the term R−1∆t/|R−1t| will approach an asymptote
whose value depends on R and t; in this large ∆q regime, the
expression in (16), which suggests that ∆q/|q| should diverge
without limit as |t| → 0, no longer applies.

It bears remarking that the computation of Fisher discrim-
inant, in the ideal case where ξ(x) = x + t, does not actu-
ally require explicit manufacture of matched-pair data. From
pooled covariance R, and known signature t, one can imme-
diately derive the matched filter q = R−1t.

More generally, what we are seeing here is a trade-off be-
tween estimates of the distribution p(x) and estimates of the
treatment ξ. For traditional machine learning, we need to ef-
fectively (if not explicitly) estimate both p(x) and ξ; but with
matched-pair learning, we already know ξ, and only have to
estimate p(x). In the example of the Fisher discriminant,
the treatment corresponds to a vector t with d unknown pa-
rameters and the distribution corresponds to the covariance
matrix R, which has O(d2) unknown parameters. One might
imagine, therefore, particularly for large d, that not knowing
the covariance matrix is a much greater a handicap than not
knowing the treatment. And therefore, incorporating knowl-
edge of ξ (which is what the matched-pair formalism effec-
tively does) should not be expected to provide much advan-
tage. But the general dictum that machine learning can ef-
fectively make inferences about distributions without directly
estimating those distributions applies here. We do not ulti-
mately need to estimate R; what we want is an estimate of
q, which has only d unknown parameters.

4.1.3 Nonlinear algorithms applied to non-Gaussian
data

Using the data described in Section 3.2 and shown in Figure 3,
two nonlinear machine learning algorithms were used to in-
vestigate the utility of matched-pair learning. The results,
shown in Table 2, were based on 10000 trials with each of
five kinds of data sets described in Section 3.4: (A) an initial
m samples, (B) an augmented data set with m new samples
added to the initial samples, (C) matched-pair training set
with 2m samples derived from the initial samples, (E,F) a
contaminated matched-pair training set with 2m samples de-
rived from an unlabeled version of the initial samples. Each of
the training sets are used to train a k-nearest neighbor (kNN)
and a support vector machine (SVM) classifier. The reported
error rates are an average over all the trials. For training sets
(A), (B), (C), and (E), the error is based on out-of-sample
data; for the transductive case (F), performance is based on
how well the initially unlabeled data is labeled. Standard er-
rors are provided in the Supplementary Materials, and range
from 0.0001 to 0.0003.

One thing that is clear from this table is that the matched-
pair training (C) significantly outperformed the training on
the initial data (A). In fact, the matched-pair training was
slightly (but not substantially) better than the augmented
data training (B), but this comparison is not as relevant as the
comparison with the initial data, since one does not in general
have arbitrary access to new data samples. The matched-pair
approach provides an effective augmentation based on the ex-
isting samples. The matched-pair training (C) also outper-
formed the contaminated matched-pair training (E), which is
hardly surprising, since the matched-pair training uses infor-
mation (the labels on the initial training data) that is not used
in the training data created from unlabeled initial data. A
visual comparison of Figure 3(c) and Figure 3(e) also explains
why (C) is expected to outperform (E); the training data is
closer to the boundary that one is trying to learn. Comparing
the performance of the classifier trained using the contami-
nated training data in (E,F), we see that the out-of-sample
performance (E) is nearly identical to the transductive perfor-
mance (F), with perhaps a slight advantage to transductive.

The kNN classifier used the parameter k that optimized
performance for the initial samples; thus, the improvement
that the various augmentation and matched-pair schemes ex-
hibited over the initial is not over-estimated, and may even be
slightly under-estimated. The SVM used a Gaussian radial
basis function kernel of width

√
2, which is the default in the

libSVM package (Chang and Lin, 2001) for data sets in two
dimensions; and the regularization constant C was chosen to
optimize the performance of the initial samples. In the online
Supplementary Materials, a more extensive table is provided
with a range of k and C values, which shows that the results
are fairly insensitive to choice of k and C. The supplementary
table also includes standard error estimates for each number
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in the table.

4.1.4 Fisher discriminant applied to hyperspectral
data

The matched-pair formalism provides an effective way to learn
a signal detector. While signal detection is essentially a tradi-
tional classification problem, with the two classes of interest
being signal-present and signal-absent, there are some prac-
tical differences. One is that signal-absent is usually the de-
fault, and there is a plethora of data in the signal-absent
class and a corresponding paucity of data in the signal-present
class. Another difference is that the signal-present class might
actually have signals of different strengths. A further dif-
ference, which the matched-pair formalism can productively
exploit, is that the effect of signal on background (i.e., the
treatment ξ) may be known. This enables us to use that
treatment to create an abundance of artificial signal-present
samples.

In this section, a number of approaches will be used to train
an NO2 plume detector. The first (P) is plume-based; it is the
traditional approach of using on-plume and off-plume pixels
from data where the plume location is known. The second
approach (MP) uses matched-pair training from data that is
known to be plume-free. The third approach (XMP) employs
contaminated matched pairs; this is similar to MP, but in this
case the matched pairs are applied to an image that already
includes a plume (at some unknown location).

The performance of the detectors will be tested in three dif-
ferent ways. The in-sample (IS) performance describes how
well the detector works on the data with which it was trained;
this provides a benchmark for comparison, but does not rep-
resent a useful scenario since the training data is already la-
beled. By contrast, the out-of-sample (OS) performance is
useful: this is the plume detection performance on imagery
that was not used in training. Finally, the nature of the sig-
nal detection problem permits a third kind of training/testing
combination; the transductive (T) approach begins with un-
labeled data, uses knowledge of the treatment ξ to create
artificial labeled data, builds a detector trained on that artifi-
cial data, and applies the result back to the original unlabeled
data.

Relating back to the cases listed in Section 3.4, we have
that P-OS corresponds to scenario (A), MP-OS corresponds
to scenario (C), XMP-OS corresponds to scenario (E), and
XMP-T corresponds to scenario (F).

A combination that is particularly effective for plume de-
tection is transductive training with contaminated matched
pairs (XMP-T), and that is illustrated in Figure 5. Panel (a)
shows band 8 (at 459 nm, an absorption band for NO2) of
an AVIRIS tile with no plume; this is the upper-left tile in
Figure 1. Panel (b) is the same as (a) but with a simulated
plume at 20 ppmm (parts-per-million-meters), just barely vis-
ible as a darker smudge in the lake (the arrow identifies its

(a) (b)

(c)

(d) (e)

Figure 5: This figure illustrates how contaminated matched-
pair transductive (XMP-T) learning works on the hyperspec-
tral data described in Section 3.3. See text for further expla-
nation.
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Figure 6: False alarm rate (at the threshold for which de-
tection rate is 0.5) with different strengths of plumes (leg-
end indicates training/testing strength) for various training
modes: P is plume, MP is matched-pair, XMP is contami-
nated matched pair; IS is in-sample, OS is out-of-sample, and
T is transductive.

position). In panel (c), a matched-pair image is generated by
duplicating the image in (b) and applying the effect of plume
to every pixel in the duplicated image. That is, (7) is ap-
plied with T (u, v) = 1. One can see that the right half of
this double image is darker, indicating the absorption effect
of the plume in this band.3 The XMP detector (which is un-
aware of the existence of a plume in the left half of the image)
will attempt to distinguish for a given pixel whether it came
from the left or the right half of this double image. Note that
although this figure shows only a single band, the detector
employs all 224 bands in the AVIRIS image. Panel (d) is the
truth map. The plume has spatially varying strength; the
white corresponds to strong plume (T (u, v) > 0.5), and the
black to essentially no plume (T (u, v) < 0.05). For evaluation
purposes, the white pixels are treated as on-plume, and the
black pixels as off-plume. The gray area is intermediate; it
does not count in the scoring of plume detection performance.
Finally, panel (e) shows results of matched-pair training using
the image in (c) for training, and applying the result back to
(b). The white pixels are the detections. The twelve white
pixels that appear in the black area are false alarms. The
white pixels that appear in the lightest gray area are correct
detections. There are also a number of white pixels observed
in the intermediate gray area; these are not counted either
as detections or as false alarms. Although we need the truth
map to evaluate the performance of our detector, we do not
use knowledge of the plume location to train the XMP detec-
tor.

3This protocol is analogous to the transductive training illustrated
in Figure 3(e), but with an important difference. In Figure 3(e), pos-
itive and negative samples were equally likely, and the matched pairs
were given by {(ξ−1(x),−1), (ξ(x),+1)}. For the plume detection prob-
lem, most samples are negative, and the matched pairs we use are
{(x,−1), (ξ(x),+1)}.

For all three training approaches, we use twelve-fold cross-
validation, with each fold corresponding to a different train-
ing tile. We train on a single 128×128 tile, and apply both
to that tile (for in-sample and transductive) and to all the
other tiles (for out of sample). The experiments are performed
five times, each time with the plume in a different location
(uo = 20, 40, 60, 80, 100; vo = 20), and the results from these
five runs are averaged. We consider three different plume
strengths εo, ranging from barely to easily detectable (10, 20,
and 40 ppmm). The class separability associated with these
plume strengths can be visualized with histograms of matched
filter output for both off-plume and on-plume pixels; these
histograms are provided in the Supplementary Materials.

Each plume includes 136 on-plume pixels, corresponding to
T (u, v) > 0.5 (see Figure 3.3). Each detector’s threshold θ is
adjusted to a level that produces a detection rate of one half
(i.e., of 68 pixels), and the fraction of pixels that are (falsely)
detected in the off-plume area (i.e., black in Figure 5(d)) pro-
vides the error measure that is reported in Figure 6. Although
this provides a consistent way to compare performance, it
bears remarking that the value of this threshold would not be
known in operational practice.

A number of trends are evident in Figure 6. As a sanity
check, we see that as the strength of the plume increases, it
is more easily detectable. At 10 ppmm, the plume is essen-
tially lost in the background, with a false alarm rate that is
very high. (Note that even a five percent false alarm rate
would be unacceptably large in most scenarios because there
are so many off-plume pixels in the image.) For the stronger
40 ppmm plume, by contrast, the false alarm rate drops by
roughly two orders of magnitude. Although training and test-
ing are generally performed with the same plume strength, we
included two experiments where we trained with either weaker
(10 ppmm) or stronger (40 ppmm) plumes than we used for
testing (20 ppmm). The main observation is that the training
and testing strengths do not need to be precisely matched, al-
though we observe in all but the in-sample case that training
with a stronger plume led to a detector that performed better.

The lowest error is achieved for in-sample plume training
(P-IS); this is no surprise, since the training and testing sets
are identical. This is also of no operational use because it
requires one to know where the plume is before attempting
to detect the plume. It does, however, provide a lower bound
on the expected error for the given plume strength.

One clear result is that MP-OS outperforms P-OS; that is,
matched-pair training is more effective than training based
on plumes. It bears remarking that the matched-pair train-
ing employed a single plume strength over the whole image,
whereas the testing employed a model plume whose strength
varied spatially over the extent of the plume.

One issue with MP training is that it assumes that there
is no plume present in the image where training occurs. This
is operationally plausible, but it is also possible that a plume
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Figure 7: Angular error versus class separation for the online
Adaline classifier, applied to the data described in Section 3.1,
using the four matched-pair scenarios described in Section 3.4.
As in Figure 4.1.1, the tests are applied to data sets with
m = 50 (◦) samples, and to data sets with m = 500 (�).
Plotted results are based on out-of-sample error, averaged
over 200 trials.

may be present in an area that is assumed to be plume-free.
Comparing MP-OS with XMP-OS, we see that the effect of
the contamination is negligible, except at the largest plume
strength.

Using matched-pair training on data that may already con-
tain a plume (of unknown location and strength) enables it
to be used with the same image that it was trained on. Thus,
XMP-T is an operationally viable protocol. And, for the
experiments in this section, it also achieved substantial im-
provement over the out-of-sample protocols. By contrast, the
transductive advantage in Table 2 was negligible.

4.2 Online learning algorithms

For some problems, the data arrives one or a few samples at
a time, and one seeks a classifier that can be trained incre-
mentally. An example involving real-time target detection in
hyperspectral imagery is provided by Schaum (2006). Tradi-
tional learning algorithms can in principle be used in this sce-
nario, by simply re-training from scratch with an ever-growing
training set, but this also imposes ever-growing demands on
memory and computing resources, and so online algorithms
have been developed for efficient learning in this situation.
For these algorithms, the order of data presentation can re-
ally matter, and as we will see, matched-pair approaches can
improve their performance.

4.2.1 Adaline

The ADAptive LINear Element (ADALINE) algorithm of
Widrow and Hoff (1960) is designed to optimize a loss func-
tion that corresponds to the Fisher discriminant. So for a
problem in which the two classes are both Gaussian with dif-
ferent means but the same covariance, it is an appropriate
choice for investigating the utility of matched pairs. Initial-
izing the iteration at q0 = 0, the matched filter estimate is
updated using

qn = qn−1 + γn
(
yn − qT

n−1xn

)
xn (17)

where (xn, yn) is the n’th data sample, and γn is a time-
dependent gradient multiplier. Following the usual prescrip-
tion for stochastic approximation (Robbins and Monro, 1951;
Bottou and Le Cun, 2004), we take γn = γo/n, and for the
experiments reported here, we adjusted γo by hand. The algo-
rithm is a stochastic gradient descent to minimize the average〈
(y − qTx)2

〉
.

If we take the expected value of (17), we obtain

〈qn〉 = 〈qn−1〉+ γn
〈(
yn − qT

n−1xn

)
xn

〉
= 〈qn−1〉+ γn

(
〈ynxn〉 −

〈
xnx

T
nqn−1

〉)
= 〈qn−1〉+ γn

(
〈ynxn〉 −

〈
xnx

T
n

〉
〈qn−1〉

)
(18)

where the last line follows from the independence of xn and

qn−1. The convergence is to q =
〈
xxT

〉−1 〈yx〉 even as nei-

ther
〈
xxT

〉
nor 〈yx〉 are directly estimated. This Fisher dis-

criminant solution is the optimal detector for Gaussian data.
As seen in Figure 7, the algorithm performs best (by a

substantial amount) when using matched-pair data. But the
order of data presentation is important; for the “Adaline-
matched” curve, each data point in the original set was im-
mediately followed by its matched-pair counterpoint. The
experiments shown in Figure 7 also included a scrambled set
of matched-pair data – the same data but in a random order
– and that also performed poorly compared to the ordered
matched-pair result.

4.2.2 Adaline-Dipole

Since we know that the data are matched pairs, we can build
this structure directly into the algorithm instead of storing it
(redundantly) in the input data set. Given a data set and a
process ξ, we can rewrite the update rule in (17) as:

qn = qn−1+
1

2
γn
(
yn − qT

n−1xn

)
xn

+
1

2
γn
(
−yn − qT

n−1ξ
−yn(xn)

)
ξ−yn(xn). (19)

In the case where we have our matched pairs given by
(x,−1) and (x + t,+1), then we can write the update rule

qn = qn−1 + γn

(
1

2
t− (qT

n−1xn − ttT )xn

)
(20)
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Figure 8: Performance of variants of the Adaline-dipole al-
gorithm, applied to the data described in Section 3.1. The
dashed and solid lines correspond to performance of the tra-
ditional Adaline algorithm using initial samples and using the
matched-pair samples, respectively – these curves also appear
in Figure 7. Also, as in Figure 7, the tests are applied data
sets with to m = 50 (◦), and to data sets with m = 500 (�).

We call this the Adaline-dipole algorithm. This is similar to
the straight Adaline update rule in (17); the main difference
is that ynxn is replaced by its expected value: 1

2t. (Thus,
rather than “learn” the expected value of ynxn from multiple
iterations, we take advantage of our knowledge of ξ, and use
that expected value directly.) The extra ttT term has little
effect; it alters the magnitude of q = limn→∞qn but not its
direction.

The performance of two variants of Adaline-dipole is shown
in Figure 8. The dot-dashed line is the simple Adaline-dipole
algorithm applied to the initial data, literally ignoring the
labels on that data. The dotted line is a “dipole adjusted”
variant of Adaline-dipole that is applied to the initial data,
but uses either a given data point or its matched-pair coun-
terpoint, according to which one had a label of −1. With
this small adjustment, which still only needs half as many
updates as the Adaline algorithm with matched pairs, good
performance is seen across the entire range of class separation.

5 Conclusions and future work

In analogy to the distinction that is made in statistical
hypothesis testing between matched-pair and independent-
sample statistics, we have investigated the use of matched
pairs for machine learning. We have found that by taking ad-
vantage of known structure in some problems, matched pairs
can be generated which not only double the effective size of
the training set but which enable the learning algorithm to
more effectively find a good classifier. For batch algorithms,

just supplying appropriately paired data can improve perfor-
mance; for online algorithms, it is important that the pairs
be explicitly matched. In some cases, the learning algorithm
can be modified so that this efficient learning can be applied
directly to the initial (smaller) data set. The Adaline-dipole
is an example of an initial algorithm that achieves this result.

Although the motivation for this approach is a specific
problem in remote sensing, we believe that the potential ap-
plications are broader than that. As well as for other signal
detection problems (where the target is well characterized,
but the background is not), the approach can be used when-
ever the aim is to determine whether a “treatment” has been
applied in cases where the effect of that treatment is known.
Has a photograph been digitally sharpened? or jpeg com-
pressed? Has an audio signal been band-pass filtered? Is a
handwritten character upside down?

If there are multiple treatments whose individual effects are
known (e.g., different white-balance corrections applied to a
picture), then one can use matched triplets (or quadruplets,
etc.) in a multi-class learning context. The extension to re-
gression may also be straightforward; here, the treatment is
a variable amount and the goal is to infer that amount.

Another approach for exploiting known structure in data is
to to design a kernel that takes this structure into account;
e.g., see Schölkopf and Smola (2002, chap. 11). We speculate
that dipole kernels might provide an an efficient implemen-
tation for a kernel-based algorithm (such as a support vector
machine) that directly exploits the match-pair structure in
the data.

In the presentation here, ξ(x) is assumed to be both de-
terministic and precisely known; for real problems, this is
at best an approximation. But a stochastic model for ξ(x),
while not investigated here, should be relatively straightfor-
ward to incorporate into the algorithms. For the matched
pair {(x,−1), (x′,+1)}, instead of x′ = ξ(x), one would draw
x′ from a distribution p(x′|x). Depending on the variabil-
ity in this distribution, multiple samples might profitably be
drawn.

Informally, one often thinks of machine learning as a way
to infer the “rule” that distinguishes two cases, based solely
on representative examples of those cases. In the matched-
pair formalism, what might be considered the rule, namely
the treatment function ξ(x) that maps members of one class
into another, is already known. The problem remains nontriv-
ial, however, because the probability distribution p(x), from
which the data are presumed to be drawn, is not known.
What machine learning provides is a principled approach
for making important inferences about an unknown distri-
bution without directly estimating that distribution. What
the matched-pair formalism adds to this is a systematic way
to incorporate domain knowledge into the inference process.
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Supplementary Materials

The following supplementary materials are available online.
The data sets are contained in a single zip file, and the sup-
plementary tables and figures are included in a single pdf file.

Hyperspectral images: Twelve AVIRIS images shown in
Figure 1. (Matlab ‘mat’ files, included in zip file)

Plume: Data used to simulate the plume; this includes the
absorption spectrum for NO2 (the vector b that ap-
pears in (7)), the spatial map of plume strength given
by the function T (u, v) given in (5) and shown in Fig-
ure 3.3, the plume mask seen in Figure 5(d), and the
three-dimensional product cT (u, v)b that appears in (7).
(Matlab ’mat’ file, included in zip file)

Additional results: A pdf file containing: i) a description
of the data in the zip file; ii) an extended Table 2 with er-
ror bars and a range of k and C parameter values; iii) an
alternate Figure 4.1.1(c) with logarithmic vertical axis;
iv) density plots of matched-filter output of on-plume
and off-plume pixels described in Section 4.1.4; and v) a
table of values shown in Figure 6, including error bars.
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